
Figure 1: O-notation, a.k.a. ”Big-O”, is used to express the asymptotic upper bound
on f(n) by some constant multiple of g(n), written as f(n) = O(g(n)). This upper
bound represents the growth of the worst case running time or space consumption and
makes no claims regarding tightness of fit. The shaded area underneath each function
depicts the absence of an asymptotic lower bound associated with O-notation. See
Table 1 for a partial numerical analysis.

№ Name O(g(n)) Complexity, f(n)

9 Factorial O(n!) 2.09× 1013 2.63× 1035 1.27× 1089 3.86× 10215

8 Exponential O(2n) 65,536 4.29× 109 1.84× 1019 3.40× 1038 1.16× 1077 1.34× 10154

7 Cubic O(n3) 4,096 32,768 262,144 2,097,152 1.68× 107 1.34× 108 1.07× 109

6 Quadratic O(n2) 256 1,024 4,096 16,384 65,536 262,144 1,048,576

5 Log-linear O(n log n) 64 160 384 896 2,048 4,608 10,240

4 Linear O(n) 16 32 64 128 256 512 1,024

3 Log-squared O(log2 n) 16 25 36 49 64 81 100

2 Logarithmic O(log n) 4 5 6 7 8 9 10

1 Constant O(1) 1 1 1 1 1 1 1

Input Size, n 16 32 64 128 256 512 1,024

Table 1: Growth rates for algorithms with common complexities.

bigOchart.com


